Software Model for Estimating Project Cost, Schedule, and Reliability Based on DSM Technique and Monte Carlo Simulation

Mohamed Mahmoud Ibrahim
Research Assistant – Kyushu Institute of Technology
M.Sc., MBA, Ph.D. Candidate

Ass. Prof. Kenichi Asami, Prof. Mengu Cho
Kyushu Institute of Technology
Agenda

• What is a Project?
• Project Activities Representations
• The Dependency Structure Matrix
• Cost, Schedule and Reliability Model
• Nano-Satellite Project Simulation Results
• Future Work
• Conclusion
Agenda

• What is a Project?
• Project Activities Representations
• The Dependency Structure Matrix
• Cost, Schedule and Reliability Model
• Nano-Satellite Project Simulation Results
• Future Work
• Conclusion
What is a project?

“A temporary endeavor undertaken to create a unique product or service”

PMI
What is a project? - Efforts

Level of Activity

Start

Initiate

Plan

Execute

Control

Close

Finish

11/1/2012 Nagoya, Japan, October 10-13, 2012
What is a Project? – Cornerstones

Cost — Schedule
Scope — Quality
Agenda

• What is a Project?
• Project Activities Representations
• The Dependency Structure Matrix
• Cost, Schedule and Reliability Model
• Nano-Satellite Project Simulation Results
• Future Work
• Conclusion
Project Activities Representations

• Critical Path Method

• GANTT
Likelihood Schedule Estimate

• Program Evaluation and Review Technique

\[t_e = \frac{a + 4m + b}{6} \]

where

- \(t_e \) = expected time
- \(a \) = optimistic time estimate
- \(m \) = most likely time estimate
- \(b \) = pessimistic time estimate
Agenda

• What is a Project?
• Project Activities Representations
• The Dependency Structure Matrix
• Cost, Schedule and Reliability Model
• Nano-Satellite Project Simulation Results
• Future Work
• Conclusion
Representation Complexity
The DSM - Relations

(a) Dependent (Serial)

(b) Independent (Parallel)

(c) Interdependent (Coupled)
The DSM - Example

DSM Table

<table>
<thead>
<tr>
<th></th>
<th>task 1</th>
<th>task 2</th>
<th>task 3</th>
<th>task 4</th>
<th>task 5</th>
<th>task 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>task 1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>task 2</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>task 3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>task 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>task 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>task 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DSM Diagram

```
  task 1
   ↓     ↓     ↓
  task 2  task 3  task 4
       ↓     ↓
  task 6  task 5
          ↓     ↓
           task 3  task 4
```

11/1/2012 Nagoya, Japan, October 10-13, 2012
The DSM Analysis - Banding Algorithm

<table>
<thead>
<tr>
<th>Task Code</th>
<th>Task Description</th>
<th>Banding</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>Prepare UAV Preliminary DR&O</td>
<td></td>
</tr>
<tr>
<td>A511</td>
<td>Create UAV Preliminary Design Configuration</td>
<td>1</td>
</tr>
<tr>
<td>A512</td>
<td>Prepare & Distribute Surfaced Models & Int. Arngmt. Drawings</td>
<td>2</td>
</tr>
<tr>
<td>A531</td>
<td>Perform Aerodynamics Analyses & Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>A521</td>
<td>Create Initial Structural Geometry</td>
<td>4</td>
</tr>
<tr>
<td>A522</td>
<td>Prepare Structural Geometry & Notes for FEM</td>
<td>5</td>
</tr>
<tr>
<td>A5341</td>
<td>Develop Structural Design Conditions</td>
<td>6</td>
</tr>
<tr>
<td>A532</td>
<td>Perform Weights & Inertias Analyses</td>
<td>7</td>
</tr>
<tr>
<td>A533</td>
<td>Perform S&C Analyses & Evaluation</td>
<td>8</td>
</tr>
<tr>
<td>A5342</td>
<td>Develop Balanced Freebody Diagrams & Ext. Applied Loads</td>
<td>9</td>
</tr>
<tr>
<td>A5343</td>
<td>Establish Internal Load Distributions</td>
<td>10</td>
</tr>
<tr>
<td>A5344</td>
<td>Evaluate Structural Strength, Stiffness, & Life</td>
<td>11</td>
</tr>
<tr>
<td>A54</td>
<td>Preliminary Manufacturing Planning & Analyses</td>
<td>12</td>
</tr>
<tr>
<td>A6</td>
<td>Prepare UAV Proposal</td>
<td>13</td>
</tr>
</tbody>
</table>

[Matrix Diagram]

The diagram illustrates the banding algorithm for the DSM Analysis process, with tasks assigned to specific bands (1-14) for alignment and management purposes.
Agenda

• What is a Project?
• Project Activities Representations
• The Dependency Structure Matrix
• **Cost, Schedule and Reliability Model**
• Nano-Satellite Project Simulation Results
• Future Work
• Conclusion
Tri-Probability Distribution Function

PDF

TriPDF Area = \(\frac{b \cdot h}{2} = \frac{(WCV - BCV) \cdot P(MLV)}{2} = 1 \)

\[P(MLV) = \frac{2}{(WCV - BCV)} \]

BCV: Best Case value
MLV: Most Likely Value
WCV: Worst Case Value
Cost, Schedule and Reliability Model

LOADER
Loading of Input Data
(DSM, Rework probabilities, Rework Impact, Learning Curve, TriPDF limits)

GENERATOR
TriPDF generator
For each process (PDF and CDF)

SIMULATOR
Simulation of activity running through propagating time step, summation of cost and schedule, and rework evaluation

RELIABILITY
Calculation of System reliability after all processes have finished running.

GRAPHER
Graphical representation of results
Total Cost and Schedule

\[C_{Total} = \sum_{i=1}^{n} C_i \]

\[S_{Total} = \sum_{i=1}^{n} S_i \]

Where \(n \) the number of processes in the DSM.

At each Simulation run a value for \((S_{total}, C_{total}, R_{total}) \) will be generated.
Total Reliability

\[R_i = 1 - P_{\text{failure}} \quad \text{where } i \text{ denotes a subsystem} \]

\[R_{\text{System}} = \prod_{i=1}^{n} R_i \]

\[P_{\text{failure after rework}} = \frac{P_{\text{failure before rework}}}{2^x} \]

where \(x \) is total number of rework for subsystem processes

\[x = \sum_{h=1}^{m} \text{process rework count}_h \times \text{effect weight of process (h)} \]
Agenda

• What is a Project?
• Project Activities Representations
• The Dependency Structure Matrix
• Cost, Schedule and Reliability Model
• Nano-Satellite Project Simulation Results
• Future Work
• Conclusion
Simulation – Nano Satellite Case
Simulation – Rework Effect

Random Rework

No Rework
Simulation – Distributions

Reliability PMF, 9 Subsystems at 95% each

Cost PMF, 9 Subsystems at 95% each

Schedule PMF, 9 Subsystems at 95% each
Simulation – Processes Importance

![Graph showing the relationship between process order and importance impact (weight).]
Simulation – Equal Weights

Cost PMF and CDF

Schedule PMF and CDF
Simulation – Equal Weights

Reliability PMF and CDF
Simulation – Equal Weights

Cost, Schedule, Reliability Trend

Cost (Thousands of Yen)

Reliability

Schedule (days)

510 520 530 540 550 560

3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 3.42

x 10^5

0.4 0.45 0.5 0.55 0.6 0.65
Simulation – Equal Weights

Cost, Schedule, Reliability Trend

Schedule (days)

Reliability

Cost (Thousands of Yen)
Simulation – Equal Weights

Cost, Schedule, Reliability Trend

Cost (Thousands of Yen) vs Schedule (days) with reliability trend overlay.
Simulation – Equal Weights

Cost, Schedule, Reliability Trend

Reliability

Cost (Thousands of Yen)

Schedule (days)

Cost (Thousands of Yen)
Simulation – Equal Weights

Joint Cost and Schedule PDF Probability

Cost (Thousands of Yen)

Relative Probability

Schedule (days)

Cost (Thousands of Yen)
Simulation – Summary

<table>
<thead>
<tr>
<th></th>
<th>Weight</th>
<th>Max</th>
<th>Min</th>
<th>Std. Dev.</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Equal</td>
<td>34159.44</td>
<td>32755.75</td>
<td>187.78</td>
<td>33502.71</td>
<td>33505.55</td>
</tr>
<tr>
<td></td>
<td>Inc.</td>
<td>34199.86</td>
<td>32788.88</td>
<td>185.55</td>
<td>33499.4</td>
<td>33501.74</td>
</tr>
<tr>
<td></td>
<td>Dec.</td>
<td>34241.34</td>
<td>32712.80</td>
<td>188.27</td>
<td>33501.61</td>
<td>33503.65</td>
</tr>
<tr>
<td>Schedule</td>
<td>Equal</td>
<td>568.20</td>
<td>503.20</td>
<td>9.375</td>
<td>528.01</td>
<td>527.6</td>
</tr>
<tr>
<td></td>
<td>Inc.</td>
<td>573</td>
<td>500.6</td>
<td>9.339</td>
<td>528.12</td>
<td>527.6</td>
</tr>
<tr>
<td></td>
<td>Dec.</td>
<td>570.5</td>
<td>499.20</td>
<td>9.374</td>
<td>528.09</td>
<td>527.6</td>
</tr>
<tr>
<td>Reliability</td>
<td>Equal</td>
<td>0.6403</td>
<td>0.4305</td>
<td>0.0366</td>
<td>0.4866</td>
<td>0.4802</td>
</tr>
<tr>
<td></td>
<td>Inc.</td>
<td>0.4867</td>
<td>0.4305</td>
<td>0.0074</td>
<td>0.44</td>
<td>0.4382</td>
</tr>
<tr>
<td></td>
<td>Dec.</td>
<td>0.7484</td>
<td>0.4305</td>
<td>0.0567</td>
<td>0.5245</td>
<td>0.5162</td>
</tr>
</tbody>
</table>

- Cost is estimated in (10,000 Yen – Japanese).
- Increasing and Decreasing Curves are linear with slope 60 Degrees.
- Schedule is in days.
- Reliability is estimated for 8 subsystems, each of which has an initial failure rate of 0.1.
What the numbers say?

• Focus on the early design stages:
 1. Defining sufficient, consistent and matching technical requirements.
 2. Accurate interface control documents.
 3. Full coverage of technical requirements in verification control matrices.
 4. Follow a formal design method instead of best practices.
Agenda

• What is a Project?
• Project Activities Representations
• The Dependency Structure Matrix
• Cost, Schedule and Reliability Model
• Nano-Satellite Project Simulation Results
• Future Work
• Conclusion
Future Work

• Currently we finished the development of the model and its validation and verification.
• Run the model on more realistic data for Nano-Satellite project and estimate more accurate Cost, Schedule and Reliability under different processes configurations.
• Study the effect of removing some test processes on overall project reliability. (i.e. Qualification testing)
• Enhance the model to include optimization, cost modeling, quantitative risk estimation and scheduling under constrained resources.
• Deploy Kyutech Project Schedule, Cost, Risk and Reliability calculator as an (online) tool.
Agenda

• What is a Project?
• Project Activities Representations
• The Dependency Structure Matrix
• Cost, Schedule and Reliability Model
• Nano-Satellite Project Simulation Results
• Future Work
• Conclusion
Conclusion

• DSM is a very useful technique used for modeling, analyzing and planning complex engineering systems.

• Reasonable project schedule, cost and reliability point can be reached by studying different project processes’ configurations using the developed model.

• If more focus is given to early design stages that would suffice for better reliability, cost and schedule.
Thank You